Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles.
نویسندگان
چکیده
Understanding the interactions between natural organic matter (NOM) and zero-valent iron nanoparticles (nano-Fe0) and magnetite nanoparticles (nano-Fe3O4) is essential for evaluating their performance in pollutant remediation, as well as determining their fate and transport in the environment. Batch experiments were performed to investigate the sorption/desorption behaviors of humic acid (HA) on commercially available nano-Fe0 and nano-Fe3O4. The sorption/desorption of HA on nano-Fe0 and nano-Fe3O4 were well described by both the Langmuir model and the modified Langmuir model. The adsorption capacities of HA were 8.77±0.31 mg C/g and 10.05±0.95 mg C/g for nano-Fe0 and nano-Fe3O4, respectively. The interactions of HA with nano-Fe0 and nano-Fe3O4 were highly pH-dependent. On one hand, nano-Fe0 had its maximum adsorption of 11.0 mg C/g HA at pH=3, which decreased to 0.6 mg C/g when pH increased to 11.9; on the other hand, alkaline condition enhanced HA desorption greatly. At pH=10.1, after 24 h desorption experiments, nearly 80% of initially adsorbed HA desorbed from the nanoparticles. The interactions of HA with nano-Fe0 and nano-Fe3O4 were also influenced by different ion compositions in solution. Divalent cations (e.g. Ca2+, Mg2+) enhanced HA adsorption significantly, while phosphate nearly eliminated HA adsorption and promoted significantly HA desorption.
منابع مشابه
Assessment of Phenol Removal Efficiency by Synthesized Zero Iron Nanoparticles and Fe Powder Using the Response Surface Methodology
The purpose of this study was the investigation of the removal of phenol with nanoparticles zero valent iron and iron powder. The effect of various parameters such as initial concentration, pH, contact time, and dosage of NZVI and Fe powder was examined, and a Central Composite Design (CCD) was then applied to appraisal the effect of these variables. The chemical and physical characteristic...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملResponse of morphological and physiological traits of canola (Brassica napus L.) to application of stabilized zero-valent iron nanoparticles under salinity stress
In order to study the effect of zero-valent iron nanoparticles on morphological and physiological traits of canola (Brassica napus L. cv. 'Hayola 401') under salinity stress, a research was conducted under controlled conditions in factorial based on completely randomized design in three replicates. In the first phase, the zero-valent iron nanoparticles were synthesized and in the second phase, ...
متن کاملSoil Remediation Using Nano Zero-valent Iron Synthesized by an Ultrasonic Method
A new method for the synthesis of nano zero-valent iron (nZVI) was developed in the present study. Ultrasonic waves, as a novel method, were used to synthesize the nanoparticles. The morphology and surface compositions of the particles were characterized by using FESEM, XRD, BET, and particle size analyzer. The synthesized nanoparticles were then utilized as a Fenton-like catalyst to degrade of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water science and technology : a journal of the International Association on Water Pollution Research
دوره 72 2 شماره
صفحات -
تاریخ انتشار 2015